skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Ho, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Belmans, Pieter; Ho, Wei; de_Jong, Aise Johan (Ed.)
    In this expository paper, we show that the Deligne–Mumford moduli space of stable curves is projective over Spec(Z). The proof we present is due to Kollár. Ampleness of a line bundle is deduced from the nefness of a related vector bundle via the ampleness lemma, a classifying map construction. The main positivity result concerns the pushforward of relative dualizing sheaves on families of stable curves over a smooth projective curve. 
    more » « less